A high-resolution dual-band terahertz (THz) radiometer was designed to measure vertical distributions of chemical elements in the middle atmosphere of the Tibetan Plateau. A forward simulation, which always should be conducted firstly for the development of a matching retrieval algorithm, has not been done before. We use two radiative transfer models, ARTS and AM, to simulate the water vapor, ozone and carbon monoxide spectra on the plateau based on the spectral design of the THz radiometer. The emission line characteristics of the three gases in this spectral band are identified. Reasons for the differences in the spectral simulations between the two models are analyzed for individual gases. The impact of several different spectral parameter settings on the simulations are evaluated through a series of sensitivity experiments. This study suggests that the ARTS is more suitable for the development of the THz radiometer retrieval algorithm. An optimal parameter setting of the ARTS for the three elements are given.
Read full abstract