Abstract
Distinctive and robust local feature description is crucial for remote sensing application, such as image matching and image retrieval. A descriptor for multisource remote sensing image matching that is robust to significant geometric and illumination differences is presented. In the proposed method, a traditional scale-invariant feature transform algorithm is applied for local feature extraction and a feature descriptor, named robust center-symmetric local-ternary-pattern (CSLTP) based self-similarity descriptor, is constructed for each extracted feature point. The main idea of the proposed descriptor is a rotation invariance description strategy on local correlation surface. Unlike common distribution-based descriptors or geometric-based spatial pooling descriptors, the proposed descriptor uses rotation invariance statistically strategic for CSLTP description on a correlation surface, which is inherently rotation invariant and robust to complex intensity differences. Then, a bilateral matching strategy followed by a reliable outlier removal procedure in the geometric transformation model is implemented for feature matching and mismatch elimination. The proposed method is successfully applied for matching various multisource satellite images and the results demonstrate its robustness and discriminability compared to common local feature descriptors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.