Conformers have similar vibrational structures both in neutral (S0) and cationic (D0) states owing to the comparable force fields between their nuclei. Nevertheless, there is a continuous development of vibrational spectroscopic techniques to rigorously identify individual conformers in the designated molecule but only in the S0 state. We developed an inventive conformer-specific vibrational spectroscopic technique to measure identifiable vibrational spectra of individual conformers in both S0 and D0 states. We measured isomer-specific vibrational spectra in both states for gas-phase acetone and oxetane isomers from a solution with azeotropic composition to verify the proposed techniques that are based on infrared (IR) resonant vacuum ultraviolet mass-analyzed threshold ionization (VUV-MATI) spectroscopy. The measured IR dip VUV-MATI and IR hole-burn VUV-MATI spectra for each isomer, which correspond to isomer-specific vibrational spectra in both states, can be represented by IR-resonant VUV photoionization and one-photon VUV-MATI spectra of the binary mixture, respectively, under supersonic expansion conditions. The partial pressures of the individual isomers in the binary mixture with different mole fractions estimated according to the relative peak intensities in the measured spectra provide insights on solute-solvent interactions. We suggest that the verified IR-resonant VUV-MATI spectroscopy can form the basis of effective schemes toward conformational chemistry.