Abstract

Transition-metal sandwich complexes play key roles in various fields such as fundamental and applied chemistry; many of their unique properties arise from their ability to form stable or reactive ions. The first mass-analyzed threshold ionization (MATI) spectra of mixed sandwich compounds, (Ch)(Cp)Cr and (Cot)(Cp)Ti (Ch = η7-C7H7, Cp = η5-C5H5, Cot = η8-C8H8), presented in this work provide an extremely accurate description of the electron detachment. The ionization energies of the neutrals and stabilization energies of the metal-ligand interactions upon ionization are derived from the MATI data with an accuracy of 0.0006 eV. In combination with DFT calculations, laser threshold ionization spectroscopy reveals surprisingly different structural variations accompanying the detachment of the non-bonding dz2 electron from the sandwich molecules. The geometry of (Ch)(Cp)Cr remains practically unchanged while the ionization of (Cot)(Cp)Ti causes a noticeable shortening of the inter-ring distance, similar to that resulting from the ionization of a typical antibonding orbital. Electron density analysis throws light on the nature of these amazing effects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.