Abstract

Ln (Ln = La and Ce) atom reactions with methylamine are carried out in a pulsed-laser vaporization supersonic molecular beam source. A series of dehydrogenation species are observed with time-of-flight mass spectrometry, and the dehydrogenated Ln-containing species in the formula Ln(NCH3) are characterized by mass-analyzed threshold ionization (MATI) spectroscopy and density functional theory and multiconfiguration spin-orbit coupling computations. The MATI spectrum of La(NCH3) consists of two vibronic band systems that are assigned to the ionization of the 2A1 ground state of the C3v isomer La(N-CH3) and the 2A' ground state of the Cs isomer La(NH-CH2). The MATI spectrum of Ce(NCH3) also displays two band systems, which are attributed to the ionization of the low-energy spin-orbit coupling states of the C3v isomer Ce(N-CH3). Ln(N-CH3) is formed by the concerted dehydrogenation of the amino group, while La(NH-CH2) is formed by the dehydrogenation of both amino and methyl groups. Ce(NH-CH2) is presumably formed in the reaction based on the computational predictions but not observed by the spectroscopic measurements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.