Abstract
We here present the normal dynamics technique, which recasts the Newton's equations of motion in terms of phonon normal modes by exploiting a proper sampling of the reciprocal space. After introducing the theoretical background, we discuss how the reciprocal space sampling enables us to (i) obtain a computational speedup by selecting which and how many wave vectors of the Brillouin zone will be considered and (ii) account for distortions realized across large atomic distances without the use of large simulation cells. We implemented the approach into an open-source code, which we used to present three case studies: in the first one, we elucidate the general strategy for the sampling of the reciprocal space; in the second one, we illustrate the potential of the approach by studying the stabilization effect of temperature in α-uranium; and in the last one, we investigate the characterization of Raman spectra at different temperatures in MoS2/MX2 transition metal dichalcogenide heterostructures. Finally, we discuss how the procedure is general and can be used to simulate periodic, semiperiodic, and finite systems such as crystals, slabs, nanoclusters, or molecules.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.