Abstract

Moiré superlattices of transition metal dichalcogenide (TMD) heterostructures give rise to rich excitonic phenomena associated with the interlayer twist angle. Theoretical calculations of excitons in such systems are typically based on model moiré potentials that mitigate the computational cost. However, predictive understanding of the electron-hole coupling dominating the excitations is crucial to realize the twist-induced modifications of the optical selection rules. In this work, we use many-body perturbation theory to evaluate the relation between twist angle and exciton properties in TMD heterostructures. We present an approach for unfolding excitonic states from the moiré Brillouin zone onto the separate-layer ones. Applying this method to a large-angle twisted MoS2/MoSe2 bilayer, we find that the optical spectrum is dominated by mixed electron–hole transitions with different momenta in the separate monolayers, leading to unexpected hybridization between interlayer and intralayer excitons. Our findings offer a design pathway for exciton layer-localization in TMD heterostructures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.