This work describes the implementation of polarized neutron imaging capabilities at the neutron and x-ray tomograph (NeXT) imaging station of the Institut Laue Langevin. This development enhances the capacity of this instrument to study advanced magnetic materials, which are crucial in a variety of engineering applications. Here, the feasibility of polarized neutron imaging at NeXT is demonstrated by visualizing the magnetic field generated by a simple bar magnet. The use of a double-crystal monochromator for wavelength-resolved imaging is also shown to enable both quantitative and qualitative analyses of magnetic materials. This is demonstrated through the determination of magnetization strength in a sample of electric steel (FeSi) in addition to the distribution of its components. Polarimetric imaging is also implemented for the first time to characterize the magnetic field generated by a current-carrying cylindrical wire. These findings collectively underscore the value of incorporating polarized neutron imaging into the already cutting-edge imaging station.
Read full abstract