Abstract

Satellite formation flying technology currently represents a focal point in space mission research. Traditional spacecraft payload performance and lifespan are often constrained by propellant limitations. Electromagnetic Formation Flying (EMFF), a propellant-free formation flying technique, has garnered widespread attention. Its inherent strong nonlinearity and coupling present challenges for high-precision control within EMFF. This paper presents the relative motion dynamics of a two-satellite EMFF in the port-Hamiltonian framework and constructs an accurate nonlinear model of the dynamics. Utilizing the concept of Interconnection and Damping Assignment and nonlinear disturbance observer, a composite disturbance-rejection passivity-based controller is designed, offering a method for controlling the magnetic dipole strength of formation satellites. Finally, numerical simulations are conducted to demonstrate the viability of the proposed dynamics model and control strategy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call