The escalating global demand for energy and growing environmental concerns have stimulated the development of renewable energy-based power systems. In this context, solar power has gained significant attention, notably in the form of floating photovoltaic systems. These systems, installed on water bodies, not only boost efficiency but also reduce water evaporation from reservoirs. This research explores the power generation capabilities of floating photovoltaic systems in comparison to ground-mounted photovoltaic systems, considering a 250-watt monocrystalline photovoltaic panel. This study utilizes typical meteorological year data to comprehensively analyze four distinct locations in India. By using a single-diode model, this study finds that floating photovoltaic systems provide 6-7% more power output than ground-mounted photovoltaic systems. This efficiency gain is because the floating photovoltaic panels operate at a lower temperature (4-6°C) than their ground-mounted photovoltaic counterparts, positively influencing the overall performance. Furthermore, the degradation and soiling of ground-mounted photovoltaic and floating photovoltaic systems were also compared. The financial analysis reveals that ground-mounted photovoltaic systems typically have a lower levelized cost of electricity and shorter payback periods. Even though the financial indicators of floating photovoltaic systems are not favorable compared to ground-mounted photovoltaic systems, these results show how vital floating photovoltaic technology is for achieving the United Nations’ Sustainable Development Goals and how it could be used as an efficient technique to reduce land requirements for solar photovoltaic solutions in various geographical conditions.
Read full abstract