Whole-cell currents were examined in mouse neuroblastoma cells of the N2AB-1 line. In standard culture medium, N2AB-1 cells exhibited large voltage-dependent Na currents but no discernible K currents. Treatment of N2AB-1 cells with either dimethylsulfoxide (DMSO) in low-serum medium or with retinoic acid (RA) caused the expression of delayed rectifier K currents. Currents from two types of K channel with single channel slope conductances of 15.0 pS and 6.4 pS were observed in outside-out patches from cells of both treatment groups. Thus, while N2AB-1 cells did not exhibit K currents under standard culture conditions, they did possess the gene(s) encoding K channels. The treatments caused other changes that were not directly linked to K-channel expression. RA treatment caused neurite extension in most, but not all, N2AB-1 cells; however, all RA-treated cells, including those without neurites, expressed K currents. RA treatment did not suppress cell division or cause hypertrophy. In contrast, treatment with DMSO/low serum suppressed cell division and caused cellular hypertrophy, but did not cause long neurites to form. Thus, the regulation of K channels was not coupled in a simple fashion to properties that have been associated with a differentiated neuronal phenotype: neurite elaboration, changes in cell size, and inhibition of cell division. These results suggest that N2AB-1 cells may be a good model system for investigating the processes regulating K-channel expression.
Read full abstract