Fifth generation (5G) is a new generation mobile communication system developed for the growing demand for mobile communication. Channel coding is an indispensable part of most modern digital communication systems, for it can improve the transmission reliability and anti-interference. In order to meet the requirements of 5G communication, a dual threshold self-corrected minimum sum (DT-SCMS) algorithm for low-density parity-check (LDPC) decoders is proposed in this paper. Besides, an architecture of LDPC decoders is designed. By setting thresholds to judge the reliability of messages, the DT-SCMS algorithm erases unreliable messages, improving the decoding performance and efficiency. Simulation results show that the performance of DT-SCMS is better than that of SCMS. When the code rate is 1/3, the performance of DT-SCMS has been improved by 0.2 dB at the bit error rate of 10 − 4 compared with SCMS. In terms of the convergence, when the code rate is 2/3, the number of iterations of DT-SCMS can be reduced by up to 20.46% compared with SCMS, and the average proportion of reduction is 18.68%.
Read full abstract