Methacrylic acid (MAA) was grafted onto the surface of a poly(tetrafluoroethylene) (PTFE) plate by the combined use of the plasma treatment and photografting, and the adhesive strength between the MAA-grafted PTFE (PTFE-g-PMAA) plates with the same grafted amounts was investigated in relation to the location of grafting as well as the wettability and water absorptivity. The grafted amount at which the substrate breaking occurred at lower grafted amounts for the PTFE-g-PMAA plates prepared by the plasma treatment for shorter times before the photografting and by the photografting at higher monomer concentrations and/or at lower monomer concentrations after the plasma treatment. These grafting conditions are found to be factors affecting the location of photografting, the thickness and water absorptivity of the grafted layer, and wettability of the surface of the grafted layer. The substrate breaking was observed at the minimum grafted amount (about 2.2 µmol/cm2) for the PTFE-g-PMAA plates prepared at 2.0 M and 60°C after the plasma treatment for 10 s and at 2.0 M and 40°C after the plasma treatment for 120 s. The obtained results support that the combination of the oxygen plasma treatment with photografting of MAA is an effective procedure to enhance the adhesivity of the PTFE surface.