Abstract

Acrylamide and sodium acrylate are copolymerized in aqueous solution to study the influence of monomer concentration and ionic strength onto the reactivity ratios using in-situ 1H NMR. Increasing the monomer content leads to larger reactivity of the ionized monomer. At low monomer concentration, this effect was reproduced by adding NaCl to increase the ionic strength, indicating that the reaction kinetics is largely governed by charge interactions. On the contrary, this was not observed at higher monomer content, suggesting that non-electrostatic effects are mainly responsible of the monomer concentration dependence at these conditions. A comprehensive mathematical model was developed to predict copolymer composition as a function of monomer concentration and ionic strength. It is based on a previously-proposed rate law of propagation for ionized monomers, which has been expanded to cover any ionization degree of acrylic acid. The model is capable to reproduce composition data from different sources obtained in a wide range of reaction conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.