Spinal cord injury (SCI) causes severe and resistant sublesional disuse bone loss. Abaloparatide, a modified parathyroid hormone related peptide, is an FDA approved drug for treatment of severe osteoporosis with potent anabolic activity. The effects of abaloparatide on SCI-induced bone loss remain undefined. Thus, female mice underwent sham or severe contusion thoracic SCI causing hindlimb paralysis. Mice then received subcutaneous injection of vehicle or 20 μg/kg/day abaloparatide for 35 days. Micro-computed tomography (micro-CT) analysis of the distal and midshaft femoral regions of the SCI-vehicle mice revealed reduced trabecular fractional bone volume (56%), thickness (75%), and cortical thickness (80%) compared to sham-vehicle controls. Treatment with abaloparatide did not prevent SCI-induced changes in trabecular or cortical bone. However, histomorphometry evaluation of the SCI-abaloparatide mice demonstrated that abaloparatide treatment increased osteoblast (241%) and osteoclast (247%) numbers and the mineral apposition rate (131%) compared to SCI-vehicle animals. In another independent experiment, treatment with 80 μg/kg/day abaloparatide significantly attenuated SCI-induced loss in cortical bone thickness (93%) when compared to SCI-vehicle mice (79%) but did not prevent SCI-induced trabecular bone loss or elevation in cortical porosity. Biochemical analysis of the bone marrow supernatants of the femurs showed that SCI-abaloparatide animals had 2.3-fold increase in procollagen type I N-terminal propeptide, a bone formation marker than SCI-vehicle animals. SCI groups had 70% higher levels of cross-linked C-telopeptide of type I collagen, a bone resorption marker, than sham-vehicle mice. These findings suggest that abaloparatide protects the cortical bone against the deleterious effects of SCI by promoting bone formation.