Abstract
Clarifying the main controlling factors of reservoirs and their oil-bearing potential is vital for predicting tight sandstone reservoirs. The Chang 8 reservoir in the southwest of Ordos Basin is a typical tight sandstone reservoir and is widely distributed. Observation description and sampling analysis of cores, the grain size analysis, casting thin section, scanning electron microscope, mercury pressure, nuclear magnetic resonance, and conventional physical analysis are used to clarify the main controlling factors and oil-bearing potential characteristics of the Chang 8 reservoir in southwest Ordos Basin. The results show that delta front subfacies are mainly developed in Chang 8 member, including distributary channel, natural dike, estuary bar and distributary bay. The main rock type of reservoir is lithic feldspathic sandstone, followed by feldspathic lithic sandstone. The types of reservoir space are mainly intergranular pores and intragranular dissolved pores, with a small amount of clay-related pores and micro-fractures. The average porosity and permeability of the reservoir are 11.67% and 0.52 × 10−3μm2, respectively. The reservoirs with high oil saturation are mainly distributary channels and thicker mouth bar sand bodies. Compaction is the main factor of reservoir compaction (porosity loss rate is 55.73%), followed by cementation (porosity loss rate is 29.23%). The favorable diagenesis is the dissolution of feldspar grains and some cement. The Chang 8 tight reservoir contains various nano-scale pore-throat. For tight reservoirs with similar physical properties, the pore-throat structure controls the oil saturation of the tight reservoir. Favorable conditions for tight sandstone reservoirs oil saturation include favorable sedimentary environment (distributary channel or thick mouth bar) and suitable microscopic pore characteristics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.