Statement of problemDigital occlusal analyzers allow the recording of dental contact forces. Some authors assume a unique location for the center of contact forces at the position of maximum intercuspation, while others indicate variations in dental contact forces when recorded at different times of the day. Which approach is more appropriate is unclear. PurposeThe purpose of this in vitro study was to analyze whether a change in the balance of masticatory forces influences the location of the center of contact forces and its magnitude. Material and methodsThree different dental casts, selected under dental criteria, were mounted in maximum intercuspation on a semiadjustable articulator equipped with a pattern indicating 9 different force application points (intersection point between 3 longitudinal rows and 3 transverse columns). A force of constant magnitude (169 N) was applied 10 times at each of the application points, and occlusal forces were recorded with a digital occlusal analyzer. Then, two variables were studied: the location of the center of contact forces and its magnitude. Each force application position (9 positions × 3 dental casts=27 in total) was repeated 10 times, and measured data were statistically analyzed with 2-way repeated measures ANOVA (α=.05) test. ResultsThe repeatability of the method indicated that the coefficient of variation mean was 0.37% in the location of the center of contact forces and that its magnitude was 3.70%. The 2-way repeated measures ANOVA test revealed statistically significant variations in the location of the center of contact forces and its magnitude, revealing that longitudinal changes of the application point of masticatory forces affected the magnitude of contact forces and that longitudinal and transverse changes of the application point of masticatory forces affected the location of the center of contact forces. ConclusionsThe location of the center of contact force and its magnitude provided by a digital occlusal analyzer at the position of maximum intercuspation are not necessarily unique to each articulated dental cast. Even if the intensity of the masticatory force remains unchanged, changes in its lateral or longitudinal balance also influence the result of the occlusion forces.