Abstract

The process of equilibrium disruption in the system with a current sheet (CS) under the conditions of small magnetic field component normal to CS, which is induced by an external disturbance, has been theoretically studied within the scope of MHD. In the geomagnetotail, this disturbance can be caused by a tearing instability developing in the more distant tail section, or by a ballooning instability in the tail nearest section, or by a rapid reconfiguration at the magnetopause during the disturbance passage in the solar wind. Locally, in a limited CS section, a longitudinal momentum balance is rapidly (on the Alfven time scale) upset when a fast MHD disturbance, the form of which depends on the presence of CS, passes along the tail. The nonequilibrium temperature, which subsequently evolves through splitting of CS into several current structures, originates on a substantially larger (due to the smallness of the normal field component) time scale. Such a reconfiguration SPONTANEOUSLY develops after the initial equilibrium upset under the action of an external (weak) disturbance. During an analysis within the scope of MHD, this reconfiguration can be described as the well-known process with two pairs of nonlinear waves propagating in both directions from the central sheet plane at constant velocities: these are fast rarefaction waves and the following slow “switching-off” shocks. However, the kinetic theory reveals substantially different relaxation channels. These channels are studied in the second and third work sections, where the kinetic numerical simulation of the problem is presented and the results of this simulation are analyzed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.