Accurate modeling of cryogenic boiling heat transfer is vital for the development of extended-duration space missions. Such missions may require the transfer of cryogenic propellants from in-space storage depots or the cooling of nuclear reactors. Purdue University in collaboration with NASA has assembled a database of cryogenic flow boiling data points from steady-state heated-tube experiments dating back to 1959, which has been used to develop new flow boiling correlations specifically for cryogens. Computational models of several of these experiments have been constructed in the Generalized Fluid System Simulation Program (GFSSP), a network flow code developed at NASA’s Marshall Space Flight Center. The new Purdue-developed universal correlations cover the full boiling curve: onset of nucleate boiling, nucleate boiling, critical heat flux, and film boiling. These correlations have been coded into GFSSP user subroutines. The fluids modeled in this study are liquid hydrogen and liquid helium. Predictions of local wall temperature and pressure drop are presented and compared to the test data.
Read full abstract