Abstract

AbstractA data‐driven model for predicting the surface temperature using neural networks was proposed to alleviate the computational burden of numerical weather prediction (NWP). Our model, named TPTNet uses only 2 m temperature measured at the weather stations of the South Korean Peninsula as input to predict the local temperature at finite forecast hours. The turbulent fluctuation component of the temperature was extracted from the station measurements by separating the climatology component accounting for the yearly and daily variations. The effect of station altitude was then compensated by introducing a potential temperature. The resulting turbulent potential temperature (TPT) data at irregularly distributed stations were used as input for predicting the TPT at forecast hours through three trained networks based on convolutional neural network, Swin Transformer, and a graph neural network. By comparing the prediction performance of our network with that of persistence and NWP, we found that our model can make predictions comparable to NWP for up to 12 hr.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.