We establish a sufficient condition for existence and uniqueness of periodic solutions to partial functional differential equations of the form $\dot{u}=A(t)u+F(t)(u_t)+g(t,u_t)$ on a Banach space $X$ where the operator-valued functions $t\mapsto A(t)$ and $t\mapsto F(t)$ are $1$ -periodic, the nonlinear operator $g(t,φ)$ is $1$ -periodic with respect to $t$ for each fixed $φ∈ {\mathcal{C}}:=C([-r,0],X)$ , and satisfying $\|g(t,φ_1)-g(t,φ_2)\|≤\varphi(t)\|φ_1-φ_2\|_C$ for $φ_1, φ_2∈ {\mathcal{C}}$ with $\varphi$ being a positive function such that $\sup_{t≥0}∈t_{t}^{t+1}\varphi(τ)dτ < ∞$ . We then apply the results to study the existence, uniqueness, and conditional stability of periodic solutions to the above equation in the case that the family $(A(t))_{t≥ 0}$ generates an evolution family having an exponential dichotomy. We also prove the existence of a local stable manifold near the periodic solution in that case.
Read full abstract