Abstract
We consider the existence of invariant manifolds to evolution equations u ′ ( t ) = A u ( t ) u’(t)=Au(t) , A : D ( A ) ⊂ X → X A:D(A)\subset \mathbb {X}\to \mathbb {X} near its equilibrium A ( 0 ) = 0 A(0)=0 under the assumption that its proto-derivative ∂ A ( x ) \partial A(x) exists and is continuous in x ∈ D ( A ) x\in D(A) in the sense of Yosida distance. Yosida distance between two (unbounded) linear operators U U and V V in a Banach space X \mathbb {X} is defined as d Y ( U , V ) ≔ lim sup μ → + ∞ ‖ U μ − V μ ‖ d_Y(U,V)≔\limsup _{\mu \to +\infty } \| U_\mu -V_\mu \| , where U μ U_\mu and V μ V_\mu are the Yosida approximations of U U and V V , respectively. We show that the above-mentioned equation has local stable and unstable invariant manifolds near an exponentially dichotomous equilibrium if the proto-derivative of ∂ A \partial A is continuous in the sense of Yosida distance. The Yosida distance approach allows us to generalize the well-known results with possible applications to larger classes of partial differential equations and functional differential equations. The obtained results seem to be new.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have