Abstract
In this paper, we prove the existence of local stable and unstable invariant manifolds for a class of random differential equations driven by nonlinear colored noise defined in a fractional power of a separable Banach space. In the case of linear noise, we show the pathwise convergence of these random invariant manifolds as well as invariant foliations as the correlation time of the colored noise approaches zero.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.