Abstract

<p style='text-indent:20px;'>One of the conspicuous features of real slices of bicritical rational maps is the existence of Tricorn-type hyperbolic components. Such a hyperbolic component is called <i>invisible</i> if the non-bifurcating sub-arcs on its boundary do not intersect the closure of any other hyperbolic component. Numerical evidence suggests an abundance of invisible Tricorn-type components in real slices of bicritical rational maps. In this paper, we study two different families of real bicritical maps and characterize invisible Tricorn-type components in terms of suitable topological properties in the dynamical planes of the representative maps. We use this criterion to prove the existence of infinitely many invisible Tricorn-type components in the corresponding parameter spaces. Although we write the proofs for two specific families, our methods apply to generic families of real bicritical maps.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.