Abstract

Little seems to be known about the invariant manifolds for stochastic partial differential equations (SPDEs) driven by nonlinear multiplicative noise. Here we contribute to this aspect and analyze the Lu-Schmalfuß conjecture [Garrido-Atienza, et al., (2010) [14]] on the existence of stable manifolds for a class of parabolic SPDEs driven by nonlinear multiplicative fractional noise. We emphasize that stable manifolds for SPDEs are infinite-dimensional objects, and the classical Lyapunov-Perron method cannot be applied, since the Lyapunov-Perron operator does not give any information about the backward orbit. However, by means of interpolation theory, we construct a suitable function space in which the discretized Lyapunov-Perron-type operator has a unique fixed point. Based on this we further prove the existence and smoothness of local stable manifolds for such SPDEs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.