Many-body localization (MBL) has been proposed to enable and protect topological order in all eigenstates, vastly expanding the traditional ground-state setting. However, for the most intriguing case of two-dimensional (2D) systems with anyons and topology-dependent degeneracies, the dense many-body spectrum challenges studying this MBL protection numerically. Here we use large-scale full-spectrum variational to demonstrate MBL-protected topological order in the disordered 2D toric code perturbed by magnetic fields. We show that the system has topological local integrals of motion (tLIOMs) for magnetic field strengths below hc≈0.1 times the toric-code coupling scale. Combining tLIOMs with exact diagonalization, we also identify high-energy topological multiplets in the dense many-body spectrum. The phase diagram we find is consistent with toric-code and trivial MBL phases being separated by an intervening thermal phase. Published by the American Physical Society 2024
Read full abstract