The crystallization kinetics of phase-change materials (PCMs) entails a crucial aspect of phase-change memory technology, and their study is also of interest to advance the understanding of crystallization in general. Research on crystallization of PCMs remains challenging because of the short (nanosecond) time and small (nanometer) length scales involved. Ultrafast differential scanning calorimetry (DSC) offers a powerful tool to study crystallization via ultrahigh heating rates. Here, we used this tool to study the crystallization kinetics of growth-dominant Ge7Sb93. Two models describing the viscosity of the undercooled liquid were used to interpret the data and were subsequently crosschecked by independent growth-rate data. With both models the data in Kissinger plots could be fitted well, but one of the models resulted in a large discrepancy with the independent data. These results demonstrate that great care is needed when deriving crystal-growth rates from ultrafast DSC measurements because orders ...
Read full abstract