Abstract

The crystallization kinetics of phase-change materials (PCMs) entails a crucial aspect of phase-change memory technology, and their study is also of interest to advance the understanding of crystallization in general. Research on crystallization of PCMs remains challenging because of the short (nanosecond) time and small (nanometer) length scales involved. Ultrafast differential scanning calorimetry (DSC) offers a powerful tool to study crystallization via ultrahigh heating rates. Here, we used this tool to study the crystallization kinetics of growth-dominant Ge7Sb93. Two models describing the viscosity of the undercooled liquid were used to interpret the data and were subsequently crosschecked by independent growth-rate data. With both models the data in Kissinger plots could be fitted well, but one of the models resulted in a large discrepancy with the independent data. These results demonstrate that great care is needed when deriving crystal-growth rates from ultrafast DSC measurements because orders ...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.