The effects of dietary algal supplementation, a source of docosahexaenoic acid, on the fatty acid profile of rumen lipids in cattle were evaluated, with special emphasis on CLA and trans fatty acids produced by rumen microbes. A diet based on corn silage was fed with supplements containing the following: 1) no algal meal and fed at 2.1 kg of DM/d (control), 2) algal meal and fed at 1.1 kg of DM/d (low algal meal), 3) algal meal and fed at 2.1 kg of DM/d (medium algal meal), and 4) algal meal and fed at 4.2 kg of DM/d (high algal meal). A modified lipid extraction procedure was developed to analyze the lipid changes in rumen fluid. The percentage of stearic acid (18:0) in rumen fluid was decreased by algal meal supplementation (P < 0.001) compared with control and was linearly dependent on the level of algal meal supplementation (P = 0.005). Total trans-18:1 in rumen fluid of cattle fed the control diet was 19% of total fatty acids. Addition of algal meal increased (P < 0.001) total trans-18:1 up to 43%, mostly due to 18:1 trans-10 that increased (P = 0.002) to 29.5% of total rumen fatty acids. This increase in 18:1 trans-10 seems to suggest a change in the rumen microbial population. Vaccenic acid (18:1 trans-11) increased quadratically (P = 0.005) with increasing level of algal meal supplementation in the diets. The total CLA content was low in the control (<0.9%) and increased with dietary algal meal addition, although not significantly; the greatest level was 1.5% with the medium algal meal diet. The increase of rumenic acid (cis-9, trans-11 CLA) was quadratic (P = 0.05) with algal meal supplementation, whereas trans-10, cis-12 CLA increased linearly with increased level of algal meal from 0.08 to 0.13% (P = 0.03). The ratio of trans-11 (cis-9, trans-11 CLA + 18:1 trans-11) to trans-10 (trans-10, cis-12 CLA + 18:1 trans-10) decreased from 2.45 to 0.77, 0.87, and 0.21 for the control, low algal meal, medium algal meal, and high algal meal diets, respectively. The content of docosahexaenoic acid in rumen fluid increased (P = 0.002) from 0.3 to 1.4% of total fatty acids with increasing level of algal meal supplementation in the diets. Our results suggest that algal meal inhibits the reduction of trans-18:1 to 18:0, giving rise to the high trans-18:1 content. In conclusion, algal meal could be used to increase the concentration in rumen contents of trans-18:1 isomers that serve as precursors for CLA biosynthesis in the tissues of ruminants.
Read full abstract