As a typical load, the constant power load (CPL) has negative impedance characteristics. The stability of the buck converter system with a mixed load of CPL and resistive load is affected by the size of the CPL. When the resistive load is larger than the CPL, the buck converter with the output voltage as an output function is a non-minimum phase nonlinear system, because its linear approximation has a right-half-plane pole. The non-minimum phase characteristic limits the application of many control techniques, but the objective holographic feedback linearization control (OHFLC) method is a good control strategy that can bypass the non-minimum phase system and make the system stable. However, the traditional OHFLC method, in designing the controller, generally uses a linear optimal quadratic design method to obtain a linear feedback control law. It requires a state quantity component with a one-order relative degree to the system. But it is not easy to find such a suitable state quantity with a one-order relative degree to the system. In this paper, an improved OHFLC method is proposed for Buck converters with a mixed loads of CPL and resistive loads, using the sliding mode control (SMC) theory to design the controller, so that the output state quantity components with different relative degrees to the system can be used in the holographic feedback linearization method. Finally, the simulation and experimental results also demonstrate that this method has the same, or even better, dynamic response performance and robustness than the traditional OHFLC method.