The mechanisms of Parkinson's disease (PD) are not fully understood, which hinders the development of effective therapies. Research indicates that lower levels of biochemical indicators like bilirubin, vitamin D, and cholesterol may elevate the risk of PD. However, clinical studies on abnormal levels of biochemical indicators in PD patients' circulation are inconsistent, leading to ongoing debate about their association with PD. Here, we investigate the genetic correlation between 40 biochemical indicators and PD using a bidirectional two-sample Mendelian randomization (MR) approach to uncover potential causal relationships. Data from genome-wide association studies (GWAS) were utilized, with genetic variations from specific lineages serving as instrumental variables (IVs). The methodology followed the STROBE-MR checklist and adhered to the three principal assumptions of MR. Statistical analyses employed methods including inverse variance weighting (IVW), MR-Egger, weighted median, and weighted mode. Biochemical indicators including albumin, C-reactive protein (CRP), and sex hormone-binding globulin (SHBG) showed significant associations with PD risk. Elevated levels of albumin (OR = 1.246, 95% CI 1.006-1.542, P = 0.043) and SHBG (OR = 1.239, 95% CI 1.065-1.439, P = 0.005) were linked to higher PD risk. Conversely, increased CRP levels (OR = 0.663, 95% CI 0.517-0.851; P = 0.001) could potentially lower PD risk. The robustness of the results was confirmed through various MR analysis techniques, including assessments of directional pleiotropy and heterogeneity using MR-Egger intercept and MR-PRESSO methods. This study systematically reveals, for the first time at the genetic level, the relationship between 40 biochemical indicators and PD risk. Our research verifies the role of inflammation in PD and provides new genetic evidence, further advancing the understanding of PD pathogenesis. The study shows a positive correlation between albumin and SHBG with PD risk and a negative correlation between CRP and PD risk. This study identifies for the first time that SHBG may be involved in the onset of PD and potentially worsen disease progression.