Abstract
For ultra-high-speed digital transmission, required by 5G/6G communications, ultra-wideband common-mode rejection (CMR) structures with autonomous phase-balancing capability are proposed. Common-mode noise, caused by phase and amplitude unbalances, is one of the most undesired disturbances affecting modern digital circuits. According to the circuit design guides with a typically used differential line (DL) for high-speed digital transmission, common-mode rejection is achieved using CMR filters, and the unbalanced phase, caused by a length difference between the two signal lines of a DL, is compensated by inserting an additional delay line. However, due to nonlinear phase interactions between the two DLs and unbalanced electromagnetic (EM) interferences, the conventional compensation method is frequency-limited at around 10 GHz. To significantly enhance the common-mode rejection level and extend the phase recovery bandwidth, the proposed CMR structure utilizes a planar balanced line (BL), such as a coplanar stripline (CPS) or a parallel stripline (PSL), along with additional conductor strips arranged laterally near the BL. To demonstrate the performance of the proposed BL-based CMR structures, various types of CMR structures are fabricated, and the measurement results are compared with the 3D EM simulation results. As a result, it is proven that the proposed BL-based CMR structures have the capability to reject the common-mode noise with suppression levels of more than 10 dB and to simultaneously recover the phase balance from near DC to over 40 GHz.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have