Abstract
Centrosomes are important organelles for cell division and genome stability. Ionizing radiation exposure efficiently induces centrosome overduplication via the disconnection of the cell and centrosome duplication cycles. Over duplicated centrosomes cause mitotic catastrophe or chromosome aberrations, leading to cell death or tumorigenesis. Pluripotent stem cells, including embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), can differentiate into all organs. To maintain pluripotency, PSCs show specific cellular dynamics, such as a short G1 phase and silenced cell-cycle checkpoints for high cellular proliferation. However, how exogenous DNA damage affects cell cycle-dependent centrosome number regulation in PSCs remains unknown. This study used human iPSCs (hiPSCs) derived from primary skin fibroblasts as a PSC model to address this question. hiPSCs derived from somatic cells could be a useful tool for addressing the radiation response in cell lineage differentiation. After radiation exposure, the hiPSCs showed a higher frequency of centrosome overduplication and multipolar cell division than the differentiated cells. To suppress the indirect effect of radiation exposure, we used the radical scavenger dimethyl sulfoxide (DMSO). Combined treatment with radiation and DMSO efficiently suppressed DNA damage and centrosome overduplication in hiPSCs. Our results will contribute to the understanding of the dynamics of stem cells and the assessment of the risk of genome instability for regenerative medicine.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.