In this paper, the voltage profile of secondary networks under conservation voltage reduction and distributed-generation (DG) penetration is studied for the first time. Three networks in New York City, modeled in detail, are used as study cases. Interconnection of DG is proposed to eliminate localized low-voltage violations due to a voltage reduction of 4%, 6%, and 8% from the normal schedule. The selection of the type of DG is based on the requirements imposed by the various interconnection standards, most notably IEEE 1547, public service commission, and local utility regulations. It is found that a small percentage of DG penetration would alleviate voltage violations. The study shows that DGs installed in distributed networks improve voltage regulation, allowing utilities to use deeper voltage reductions during critical conditions. It is also shown that the network power factor is reduced when penetration of DG is high and, thus, the line drop compensation needs to be adjusted for the characteristics of the new power demand.
Read full abstract