Introduction Applied behavior analysis (ABA) is a therapy that focuses on improving specific behaviors using positive and negative reinforcement through antecedents, behaviors, and consequences, particularly in individuals with autism and other developmental disorders. It uses the principles of learning theory to bring about meaningful and positive changes in behavior. In ABA treatment, intensityrefers to the amount and frequency of therapy an individual receives. This includes weekly hours, session trials, and overall duration. Intensive treatment involves more hours and trials tailored to individual needs and responses. Younger individuals, particularly those with autism, often receive more intensive therapy because early intervention leads to better outcomes. Programs may recommend 25-40 hours per week for young children. As children age, therapy may become less intensive, focusing on specific skills. The study explores how age and treatment intensity affect the mastery of behavioral targets in ABA interventions. Materials and methods This study involved 100 participants (89 children, four adults, and seven instances where the individuals' ages were not recorded due to random data entry errors (MCAR)) who received ABA treatment over three months. The treatments included functional analysis, discrete trials, and massand naturalistic training. Data on the mastery of target behaviors were collected using the Catalystsoftware (New York, New York). The primary outcome was the percentage of mastered behavioral targets, indicating the effectiveness of the ABA treatment. Several predictors were examined, including the participant's age and treatment intensity variables, such as the average number of trials and teaching days to achieve behavioral mastery. The interaction effects between age and these treatment intensity variables were analyzed. The study used descriptive and inferential statistics to explore these interactions, including correlational and multiple regression analyses with causal moderator modeling. Results In Model 1, a baseline multiple regression analysis showed that average teaching days significantly predict the percentage of targets mastered. However, its limited explanatory power suggests other variables also play a role. Model 2 introduced interaction effects using causal models, revealing that age moderates the relationship between treatment variables and behavioral outcomes. This model provided a more nuanced understanding but still had room for improvement. Model 3 further refined the approach, achieving higher R-values and lower standard error. It highlighted age's significant role in modifying the impact of teaching days on mastery. This model's superior performance emphasizes the importance of considering age as a moderating factor in ABA interventions, leading to more effective and personalized behavior therapy. Conclusions This study significantly enhances our understanding of the complex interactions between age and treatment intensity within ABAinterventions. Practitioners and researchers can develop more tailored and effective therapeutic strategies by identifying and leveraging these interactions. This approach optimizes the treatment process and ensures that interventions are personalized to meet the unique needs of each individual. Ultimately, this leads to more successful outcomes in behavioral therapy, fostering improved adaptive behaviors and overall development.
Read full abstract