Abstract
Clinical predictors of local recurrence following radiation among patients with brain metastases (BrM) provide limited explanatory power. We developed a DNA-based signature of radiotherapeutic efficacy among patients with BrM to better characterize recurrence risk. We identified 570 patients with 1487 BrM managed with whole-brain (WBRT) or stereotactic radiation therapy at Brigham and Women's Hospital/Dana-Farber Cancer Institute (2013-2020) for whom next-generation sequencing panel data (OncoPanel) were available. Fine/Gray's competing risks regression was utilized to compare local recurrence on a per-metastasis level among patients with versus without somatic alterations of likely biological significance across 84 genes. Genes with a q-value ≤ 0.10 were utilized to develop a "Brain-Radiation Prediction Score" ("Brain-RPS"). Genomic alterations in 11 (ATM, MYCL, PALB2, FAS, PRDM1, PAX5, CDKN1B, EZH2, NBN, DIS3, and MDM4) and 2 genes (FBXW7 and AURKA) were associated with decreased or increased risk of local recurrence, respectively (q-value ≤ 0.10). Weighted scores corresponding to the strength of association with local failure for each gene were summed to calculate a patient-level RPS. On multivariable Fine/Gray's competing risks regression, RPS [1.66 (1.44-1.91, P < .001)], metastasis-associated edema [1.60 (1.16-2.21), P = .004], baseline size [1.02 (1.01-1.03), P < .001] and receipt of WBRT without local therapy [4.04 (2.49-6.58), P < .001] were independent predictors of local failure. We developed a genomic score to quantify local recurrence risk following brain-directed radiation. To the best of our knowledge, this represents the first study to systematically correlate DNA-based alterations with radiotherapeutic outcomes in BrM. If validated, Brain-RPS has potential to facilitate clinical trials aimed at genome-based personalization of radiation in BrM.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.