We consider Berry’s random planar wave model (J Phys A 10(12):2083–2092, 1977), and prove spatial functional limit theorems—in the high-energy limit—for discretized and truncated versions of the random field obtained by restricting its nodal length to rectangular domains. Our analysis is crucially based on a detailed study of the projection of nodal lengths onto the so-called second Wiener chaos, whose high-energy fluctuations are given by a Gaussian total disorder field indexed by polygonal curves. Such an exact characterization is then combined with moment estimates for suprema of stationary Gaussian random fields, and with a tightness criterion by Davydov and Zitikis (Ann Inst Stat Math 60(2):345–365, 2008).