Abstract

AbstractOne way to model telecommunication networks are static Boolean models. However, dynamics such as node mobility have a significant impact on the performance evaluation of such networks. Consider a Boolean model in $\mathbb {R}^d$ and a random direction movement scheme. Given a fixed time horizon $T>0$, we model these movements via cylinders in $\mathbb {R}^d \times [0,T]$. In this work, we derive central limit theorems for functionals of the union of these cylinders. The volume and the number of isolated cylinders and the Euler characteristic of the random set are considered and give an answer to the achievable throughput, the availability of nodes, and the topological structure of the network.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.