The induced accumulation of mercury (Hg) by plants was investigated for the species Phaseolus vulgaris (Bush bean), Brassica juncea (Indian mustard), and Vicia villosa (Hairy vetch). All plants were grown in modified Hg-contaminated mine tailings and were treated with sulphur-containing ligands to induce Hg accumulation. The effects of varied substrate Hg concentration and humic acid (HA) level on the induced plant-Hg accumulation for B. juncea were examined. Thiosulphate salts (ammonium and sodium) mobilised Hg in the substrates and caused an increase in the Hg concentration of roots and shoots of all tested plant species. Root Hg accumulation was positively correlated to extractable Hg for (NH4)2S2O3-treated B. juncea plants grown in HA-amended substrates. However, shoot Hg translocation for this species was inhibited at 1.25 g HA kg(-1) of substrate. Mercury-thiosulphate complexes could be translocated and accumulated in the upper parts of the plants up to 25 times the Hg concentration in the substrate. We conclude that shoot Hg accumulation in the presence of thiosulphate salts is dependent upon plant species characteristics (e.g. root surface area) and humic acid content.