Objective: To study the effects of exosome secreted by ovarian cancer (OC) cell on the differentiation and metastasis of normal fibroblasts (NFs). Methods: NFs were collected from patients who underwent hysteromyoma resection in the Affiliated Hospital of Qingdao University from May to December 2019. Exosome was extracted from the culture supernatant of SKOV3 cells by using ultra-high-speed centrifugation. The NFs were co-cultured with condition medium (CM), exosome of SKOV3 (SKOV3-exo) and control medium. The expression levels of fibroblast activation protein (FAP) and α-smooth muscle actin (α-SMA) were detected by real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR) and western blot. The metastatic ability of NFs was detected by Transwell array. Results: Under the transmission electron microscope, the extracellular vesicles extracted from the culture supernatant of SKOV3 were 30-100 nm in diameter with cup holder-like bilayer membrane structure, and the protein expression levels of TSG101 and HSP27 in exosomes (1.00±0.05 and 1.12±0.13) were higher than those of ovarian cancer SKOV3 cells (0.22±0.21 and 0.36±0.14, respectively, P<0.05). PKH67 fluorescently labeled exosomes could be taken up by NFs. The expression levels of α-SMA and FAP mRNA in CM group(2.91±0.15 and 3.21±0.33)and SKOV3-exo group (3.50±0.21 and 4.63±0.24, respectively) were higher than that in blank group (1.00±0.06 and 1.00±0.13, P<0.05). The protein expression levels of α-SMA and FAP in CM group and SKOV3-exo group (0.89±0.11 and 1.25±0.09, 0.81±0.09 and 1.20±0.12) were higher than those in the blank group (0.12±0.31 and 0.11±0.19, respectively, P<0.05). The migrated numbers of cells in the CM group and SKOV3-exo group [(215.01±14.80) and (389.72±19.43), respectively] were higher than that in the blank group [(113.73±4.70), P<0.05]. Conclusion: The exosome secreted by SKOV3 cells can be taken up by NFs, which makes it to differentiate into cancer associated fibroblasts (CAFs) and significantly enhances its metastatic ability, indicating that OC cells may promote the transformation of normal ovarian mesenchymal fibroblasts to CAFs through exosome pathways, and then promote the development of ovarian cancer.