Abstract

Wogonoside (WG) is a flavonoid chemical component extracted from Scutellaria baicalensis, which exerts therapeutic effects on liver diseases. Ferroptosis, a novel form of programmed cell death, regulates diverse physiological/pathological processes. In this study, we attempted to investigate a novel mechanism by which WG mitigates liver fibrosis by inducing ferroptosis in hepatic stellate cells (HSCs). A CCl4 -induced mouse liver fibrosis model and a rat HSC line were employed for in vivo and in vitro experiments, both treated with WG. Firstly, the levels of the fibrotic markers α-smooth muscle actin (α-SMA) and α1(I)collagen (COL1α1) were effectively decreased by WG in CCl4 -induced mice and HSC-T6 cells. Additionally, mitochondrial condensation and mitochondrial ridge breakage were observed in WG-treated HSC-T6 cells. Furthermore, ferroptotic events including depletion of SLC7A11, GPX4 and GSH, and accumulation of iron, ROS and MDA were discovered in WG-treated HSC-T6 cells. Intriguingly, these ferroptotic events did not appear in hepatocytes or macrophages. WG-elicited HSC ferroptosis and ECM reduction were dramatically abrogated by ferrostatin-1 (Fer-1), a ferroptosis inhibitor. Importantly, our results confirm that SOCS1/P53/SLC7A11 is a signaling pathway which promotes WG attenuation of liver fibrosis. On the contrary, WG mitigated liver fibrosis and inducted HSC-T6 cell ferroptosis were hindered by SOCS1 siRNA and pifithrin-α (PFT-α). These findings demonstrate that SOCS1/P53/SLC7A11-mediated HSC ferroptosis is associated with WG alleviating liver fibrosis, which provides a new clue for the treatment of liver fibrosis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call