Abstract

ObjectivesTo observe the changes in the bladder of fetal rats with myelomeningocele (MMC) induced by all-trans retinoic acid (atRA) during the embryonic development stages. MethodsThe fetal rat model of MMC was induced by intragastric administration of atRA to pregnant rats on embryonic day 10 (E10). Fetal rats were harvested at E16, E18, E20, and E21 for observation and further testing. Those with MMC were classified as the MMC group, while those without MMC as the RA group. The areas of MMC skin defect, the crown-rump length (CRL), and body weight in different groups were compared. The histopathological changes in the bladder were compared. The expression levels of alpha-smooth muscle actin (αSMA), smooth muscle myosin heavy chain (SMMHC), connexin 43 (Cx43), desmin, β3 tubulin, and vesicular acetylcholine transporter (VAChT) in the bladder were investigated by immunohistochemical staining and Western blotting. Pregnant rats given intragastric administration with olive oil (OIL group) at E10 were set as the blank control group. ResultsA total of 415 fetal rats of different gestational ages were harvested with an MMC incidence of 56.05 % (139/248). The incidence rate increased with embryonic days (p < 0.001). Compared with the other two control groups, the CRL and bodyweight of MMC fetal rats were significantly delayed at E21 (p < 0.001). The expression levels of αSMA, SMMHC, Cx43, desmin, β3 tubulin and VAChT in the bladder of MMC fetal rats were significantly decreased at E21 (p < 0.05). ConclusionsIn atRA-induced MMC fetal rats, there is neural, muscular, and stromal dysplasia in the bladder at an early gestational age. Further investigations on neurogenic bladder secondary to MMC are applicable using this animal model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.