During the launching of spacecraft, the on-board devices will undergo a series of pyroshock environments. In order to verify the reliability of these devices under these pyroshock environments, all of them are needed to take the shock test before launching. This paper has carried out an in-depth research on the simulation method of the pyroshock based on the true explosive excitation. In this study, a simulator containing multiple adjustment parameters is presented and the safety is considered by the design of the protective cover. And the working process of this setup is simulated with the explicit dynamic codes LS-DYNA. What’s more, the effects of the adjustment parameters on the three factors of shock Response Spectrum (SRS) of the resonant board are explored carefully. The rules achieved in this paper are verified by a typical example. The results indicate that the improved simulator can avoid the danger of explosive and make full use of the advantage of actual explosive excitation. And the test condition can be quickly realized at the simulator according to the effect rules of the three adjustable parameters.
Read full abstract