Abstract

With the massive launching of spacecraft, more and more space debris are making the low Earth orbit (LEO) much more crowded which seriously affects the normal flight of other spacecrafts. Space debris removal has become a very urgent issue concerned by numerous countries. In this paper, using SwissCube as a target, the capturing of space debris with a spaceborne four-fingered gripper was studied in order to obtain the key factors that affect the capturing effect. The contact state between the gripper fingers and SwissCube was described using a defined contact matrix. The law of momentum conservation was used to model the motion variations of the gripper and SwissCube before and after the capturing process. A zero-gravity simulation environment was built using ADAMS software. Two typical kinds of capturing processes were simulated considering different stiffness of fingers and different friction conditions between fingers and SwissCube. Comparisons between results obtained with the law of momentum conservation and those from ADAMS simulation show that the theoretical calculations and simulation results are consistent. In addition, through analyzing the capturing process, a valuable finding was obtained that the contact friction and finger flexibility are two very important factors that affect the capturing result.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.