Grapevine seedlings initially display spiral phyllotaxy of true leaves, then undergo a shift to alternate phyllotaxy with the production of the first lateral meristems (typically tendrils). The node at which the shift from spiral to alternate phyllotaxy occurs varies from about the 4th to about the 12th node on the vine. To investigate the genetic control of the transition from spiral phyllotaxy to alternate phyllotaxy, a population segregating for this trait was developed and screened. The population derived from four female parents and six male parents crossed in a Design 2 mating array (all female parents crossed to all male parents). The female parents were the pistillate flowered rootstock varieties 1613 Couderc, 93-5 Couderc (California clone), Vitis rupestris 187G, and Fercal. The male parents were staminate flowered grape rootstock germplasm, species, and species hybrid selections with diverse backgrounds, including accessions from the USDA ARS National Clonal Germplasm Repository, Davis, California (denoted with DVIT accession numbers): IAC 572, Vitis labrusca Y137 DVIT 1392, Vitis hybrid Y93 DVIT 1519, Vitis hybrid Q126 DVIT 1456, Vitis hybrid Q130 DVIT 1466, and Vitis hybrid R127 DVIT 1490. The species background of the male parents includes V. labrusca, V. mustangensis, V. riparia, V. tiliifolia, and V. rupestris. Seedlings from controlled crosses were grown in individual pots in a greenhouse with artificial illumination to provide 24 h day length. The node number of the first observed lateral meristem was recorded; the goal was 50 seedlings per population for each of 24 populations, although some populations showed poor seed germination. Male and female parents differ from one another at P =0.01, with male parents falling into three groups and female parents into two groups based on the mean node of phyllotaxy shift in their seedlings. Narrow sense heritability of the first tendril bearing node is estimated at 0.23 based on breeding value of male parents and at 0.45 based on breeding value of female parents.
Read full abstract