Abstract
BackgroundN-MYC DOWN-REGULATED-LIKE (NDL) proteins interact with the Gβ subunit (AGB1) of the heterotrimeric G protein complex and play an important role in AGB1-dependent regulation of lateral root formation by affecting root auxin transport, auxin gradients and the steady-state levels of mRNA encoding the PIN-FORMED 2 and AUXIN 1 auxin transport facilitators. Auxin transport in aerial tissue follows different paths and utilizes different transporters than in roots; therefore, in the present study, we analyzed whether NDL proteins play an important role in AGB1-dependent, auxin-mediated meristem development.Methodology/Principal FindingsExpression levels of NDL gene family members need to be tightly regulated, and altered expression (both over-expression and down-regulation) confers ectopic growth. Over-expression of NDL1 disrupts vegetative and reproductive organ development. Reduced expression of the NDL gene family members results in asymmetric leaf emergence, twinning of rosette leaves, defects in leaf formation, and abnormal silique distribution. Reduced expression of the NDL genes in the agb1-2 (null allele) mutant rescues some of the abnormal phenotypes, such as silique morphology, silique distribution, and peduncle angle, suggesting that proper levels of NDL proteins are maintained by AGB1. We found that all of these abnormal aerial phenotypes due to altered NDL expression were associated with increases in basipetal auxin transport, altered auxin maxima and altered MAX2 expression within the inflorescence stem.Conclusion/SignificanceNDL proteins, together with AGB1, act as positive regulators of meristem initiation and branching. AGB1 and NDL1 positively regulate basipetal inflorescence auxin transport and modulate MAX2 expression in shoots, which in turn regulates organ and lateral meristem formation by the establishment and maintenance of auxin gradients.
Highlights
Shoot architecture maintenance is important for plants to adapt to shifting conditions
N-MYC DOWN-REGULATED-LIKE (NDL) proteins interact with G protein signaling components and regulate root growth by modulating auxin transport and auxin gradients in the root [40]
Auxin patterns established by polar auxin transport are critical throughout plant development, and AGB1 is known to regulate or couple signaling pathways in organs distal to the root [39,46,47]
Summary
Shoot architecture maintenance is important for plants to adapt to shifting conditions. It is a complex and finely tuned process regulated by the interplay of environmental and endogenous signals, such as plant hormones. Hormonal control of shoot branching is mediated by the interplay of auxins, cytokinins and strigolactones [1,2,3,4,5,6]. Auxins inhibit bud outgrowth by positively regulating the biosynthesis of strigolactones (inhibitors of branching) [1,5,7,8]. N-MYC DOWN-REGULATED-LIKE (NDL) proteins interact with the Gb subunit (AGB1) of the heterotrimeric G protein complex and play an important role in AGB1-dependent regulation of lateral root formation by affecting root auxin transport, auxin gradients and the steady-state levels of mRNA encoding the PIN-FORMED 2 and AUXIN 1 auxin transport facilitators. Auxin transport in aerial tissue follows different paths and utilizes different transporters than in roots; in the present study, we analyzed whether NDL proteins play an important role in AGB1-dependent, auxin-mediated meristem development
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.