High performance lead (Pb)-free piezoelectric ceramics with excellent piezoelectric properties is in great demand for sensor and actuator applications. Barium zirconate titanate–barium calcium titanate [xBZT–(1 − x)BCT] (x = 0.5) is one such lead free system, which exhibits high piezoelectric properties similar to lead zirconate titanate (PZT). In this study we report the synthesis and characterization of this lead free [xBZT–(1 − x)BCT] (x = 0.5) via wet chemical sol–gel method. Calcination of the BZT–BCT precursor only at 1000 °C (against 1300 °C reported in the literature) for 4 h resulted in formation of single phase nanoparticles (<50 nm) as confirmed by X-ray diffraction (XRD) and transmission electron microscopy (TEM) studies. Highly dense and homogenous microstructure with 95% of the theoretical density was obtained by solid-state sintering of the green pellets at 1550 °C. Remanent polarization (Pr) of 11.55 μC/cm2 and relative permittivity of 20,020 at the Curie temperature of 95 °C were obtained. Electrically poled BZT–BCT ceramics samples exhibited high piezoelectric charge coefficients, d33 ∼ 530 pC/N, d33* ∼ 942 pm/V, large electromechanical coupling coefficient kp ∼ 0.45 and a large strain of 0.15%, which are comparable to those of lead based piezoelectric ceramics. The excellent piezoelectric properties of this sol–gel derived BZT–BCT system has been analyzed and correlated to its structure in this report.
Read full abstract