Asymmetric displacement currents, Ig, were measured in squid axons at different hydrostatic pressures, P, up to 60 MPa. Potassium and sodium currents were abolished by intracellular Cs+ and TEA+, by extracellular Tetrodotoxin (TTX), and by Na+ substitution with Tris+. The time course of Ig became progressively slower with increasing pressure, and the amplitude decreased. With appropriate scaling in time and amplitude, Ig records at any given P could be made to superimpose very well with those obtained at atmospheric pressure. The same scaling factors yielded a good superposition of all records obtained for voltage steps to membrane potentials in the range -30 to +42 mV. The ratio between the amplitude and time factors was larger than unity and increased with P, indicating a progressive decrease (up to 35% at 60 MPa) of the total charge displaced, Q, with no significant change in its voltage dependence. The time-scaling factor increased exponentially with P, as expected if all the steps involved in the opening of a sodium channel, and producing a major charge redistribution, have the same activation volume, delta V not equal to g approximately 17 cm3/mol. This value is roughly one-half of that characterizing the pressure dependence of sodium current activation, suggesting that some late, rate-limiting step in the opening of sodium channels has a large activation volume without being accompanied by an easily detected charge movement. Part of the decrease of Q with pressure could be attributed to an increase in sodium inactivation. However, we cannot exclude the possibility that there is a reversible reduction in the number of fast activating sodium channels, similar to the phenomenon that has been reported to occur at low temperatures (Matteson and Armstrong 1982).
Read full abstract