Abstract

Asymmetric displacement currents, Ig, were measured in squid axons at different hydrostatic pressures, P, up to 60 MPa. Potassium and sodium currents were abolished by intracellular Cs+ and TEA+, by extracellular Tetrodotoxin (TTX), and by Na+ substitution with Tris+. The time course of Ig became progressively slower with increasing pressure, and the amplitude decreased. With appropriate scaling in time and amplitude, Ig records at any given P could be made to superimpose very well with those obtained at atmospheric pressure. The same scaling factors yielded a good superposition of all records obtained for voltage steps to membrane potentials in the range -30 to +42 mV. The ratio between the amplitude and time factors was larger than unity and increased with P, indicating a progressive decrease (up to 35% at 60 MPa) of the total charge displaced, Q, with no significant change in its voltage dependence. The time-scaling factor increased exponentially with P, as expected if all the steps involved in the opening of a sodium channel, and producing a major charge redistribution, have the same activation volume, delta V not equal to g approximately 17 cm3/mol. This value is roughly one-half of that characterizing the pressure dependence of sodium current activation, suggesting that some late, rate-limiting step in the opening of sodium channels has a large activation volume without being accompanied by an easily detected charge movement. Part of the decrease of Q with pressure could be attributed to an increase in sodium inactivation. However, we cannot exclude the possibility that there is a reversible reduction in the number of fast activating sodium channels, similar to the phenomenon that has been reported to occur at low temperatures (Matteson and Armstrong 1982).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call