The purpose of the current investigation is to find the numerical solutions of the novel fractional order pantograph singular system (FOPSS) using the applications of Meyer wavelets as a neural network. The FOPSS is presented using the standard form of the Lane–Emden equation and the detailed discussions of the singularity, shape factor terms along with the fractional order forms. The numerical discussions of the FOPSS are described based on the fractional Meyer wavelets (FMWs) as a neural network (NN) with the optimization procedures of global/local search procedures of particle swarm optimization (PSO) and interior-point algorithm (IPA), i.e., FMWs-NN-PSOIPA. The FMWs-NN strength is pragmatic and forms a merit function based on the differential system and the initial conditions of the FOPSS. The merit function is optimized, using the integrated capability of PSOIPA. The perfection, verification and substantiation of the FOPSS using the FMWs is pragmatic for three cases through relative investigations from the true results in terms of stability and convergence. Additionally, the statics’ descriptions further authorize the presentation of the FMWs-NN-PSOIPA in terms of reliability and accuracy.
Read full abstract